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Abstract
Both the well-known Korteweg–de Vries equation and the Hunter–Saxton
equation with a linear ux-term, −utxx = −2ωux + 2uxuxx + uuxxx , ω > 0,
are bi-Hamiltonian in the sense that each equation is Hamiltonian with respect
to two compatible, but distinct, Poisson brackets. We present a nonlinear
change of variables which maps between the two bi-Poisson structures, giving
a correspondence between the infinite hierarchies of conservation laws and
commuting flows associated with the equations. In particular, under this change
of variables this (modified) Hunter–Saxton equation can be viewed as a member
of the KdV hierarchy.

PACS numbers: 02.30.Ik, 02.30.Jr
Mathematics Subject Classification: 37K10, 53D17

1. Introduction

Since the discovery that the KdV equation

Qt − 3
2QQy + 1

4Qyyy = 0, y ∈ R, t > 0, (1.1)

can be viewed as an infinite-dimensional completely integrable Hamiltonian system [9, 19]
(see also [7]), several other models for nonlinear wave propagation have also been found to
admit a similar structure. Among the properties normally exhibited by these integrable PDEs
are the existence of two compatible, but distinct, Hamiltonian structures, an infinite number of
conserved quantities, a Lax pair formulation and soliton solutions. All of these characteristics
are found in the equation

−utxx = −2ωux + 2uxuxx + uuxxx, x ∈ R, t > 0, (1.2)

where ω ∈ R is a constant parameter. For ω = 0 equation (1.2) was derived by Hunter and
Saxton as a model for the propagation of nonlinear waves in the director field for a nematic
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liquid crystal [11], whereas for ω > 0 it is a special case of an equation for short capillary-
gravity waves [17]. Some aspects of (1.2) resemble those of the Camassa–Holm equation
[4]

ut − utxx + 3uux = −2ωux + 2uxuxx + uuxxx, x ∈ R, t > 0, (1.3)

which also belongs to the class of integrable nonlinear wave equations with a bi-Hamiltonian
formulation [8, 16]. In particular, in addition to being integrable for a large class of initial
data, both (1.2) and (1.3) present smooth solutions that develop singularities in finite time, cf
[3, 5, 10]. Just like (1.3) is studied both when ω = 0 and when ω > 0, and the two cases are
qualitatively different in several respects (e.g. the peaked solitons exist only when ω = 0, cf
[14], and the location and the number of eigenvalues of the associated isospectral problems
are very different [6, 13]), equation (1.2) with ω > 0 has some interesting features not shared
by the Hunter–Saxton equation. For example, whereas the Hunter–Saxton equation admits
no travelling wave solutions, equation (1.2) exhibits both smooth as well as cusped travelling
waves whenever ω > 0. The cusped soliton solutions of (1.2) were studied using tools of
algebraic and complex geometry in [1], while the hierarchy associated with equation (1.2) was
considered in [2].

The bi-Hamiltonian character of (1.1) and (1.2) implies that each equation is Hamiltonian
with respect to two compatible, but distinct, Poisson brackets. In this paper we point out that
there is a nonlinear change of variables which transforms the two Poisson brackets associated
with (1.2) into those of (1.1), giving a correspondence between the infinite hierarchies of
conservation laws and commuting flows associated with the equations. In particular, under this
change of variables equation (1.2) is mapped to the first member of the negative KdV hierarchy.
The transformation is only well defined for solutions u of (1.2) satisfying −uxx +ω > 0, which
means that it is not applicable to the case (ω = 0) of the original Hunter–Saxton equation.
However, for ω > 0, this condition is fulfilled by all solutions with uxx sufficiently small,
which is the class of functions we will restrict ourselves to.

The bi-Hamiltonian formulations of (1.1) and (1.2) are presented in section 2. Section 3
contains the definition of the nonlinear transformation and describes how it relates the Poisson
structures, while the final section deals with the correspondence of the two hierarchies.

2. bi-Hamiltonian formulations

Equation (1.2) has the bi-Hamiltonian formulation

mt = X
B1
H1

[m] = X
B2
H2

[m],

where m = −uxx , and

X
B1
H1

= B1
δH1

δm
, X

B2
H2

= B2
δH2

δm

are the Hamiltonian vector fields corresponding to the functionals

H1 = 1

2

∫
um dx, H2 = 1

2

∫ (
uu2

x + 2ωu2
)

dx,

with respect to the Poisson brackets

{h1, h2}B1 =
∫

δh1

δm
B1

δh2

δm
dx, {h1, h2}B2 =

∫
δh1

δm
B2

δh2

δm
dx,

B1 = −((m + ω)Dx + Dx(m + ω)), B2 = D3
x.

Similarly, the KdV equation (1.1) can be written as

Qt = X
C1
G1

[Q] = X
C2
G2

[Q],

2
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where

X
C1
G1

= C1
δG1

δQ
, X

C2
G2

= C2
δG2

δQ

are the Hamiltonian vector fields corresponding to the functionals

G1 = 1

4

∫
Q2 dy, G2 = 1

4

∫ (
Q3 +

1

2
Q2

y

)
dy,

with respect to the Poisson brackets

{g1, g2}C1 =
∫

δg1

δQ
C1

δg2

δQ
dy, {g1, g2}C2 =

∫
δg1

δQ
C2

δg2

δQ
dy,

C1 = −1

2
D3

y + QDy + DyQ, C2 = Dy.

The recursive definitions (see [20] for more background),

B1
δHn

δm
= B2

δHn+1

δm
, C1

δGn

δQ
= C2

δGn+1

δQ
, n ∈ Z, (2.1)

yield infinite sequences of functionals

. . . , H−1,H0,H1,H2, . . . , . . . , G−1,G0,G1,G2, . . . ,

conserved under the flows of (1.2) respectively (1.1). The corresponding hierarchies consist
of the flows,

mt = XB2
n [m], Qt = XC2

n [Q], n ∈ Z,

generated by these Hamiltonians, where

XB2
n [m] = B2

δHn

δm
, XC2

n [Q] = C2
δGn

δm
.

3. Correspondence of Poisson structures

The equations in the KdV hierarchy describe commuting flows on the infinite-dimensional
level surfaces in the space of functions Q(y) obtained by fixing the values of the Gn’s, while
the hierarchy associated with (1.2) consists of commuting flows on surfaces in the space of
functions m(x). In the following we will construct a nonlinear map � : m(x) �→ Q(y) which
preserves the bi-Poisson structures and maps the commuting flows of equation (1.2) into those
of the KdV equation, that is, under this transformation the two hierarchies are equivalent.

3.1. Liouville transformation

The motivation for the change of variables derives from the Lax pair formulations of the two
equations. Assuming m + ω > 0, the Liouville transformation,

y = D−1
x

√
m + ω, φ(y) = (m(x) + ω)1/4ψ(x), (3.1)

converts the isospectral problem for (1.2),

ψxx + λ(m + ω)ψ = 0,

into the isospectral problem for the KdV equation,

−φyy + Q(y)φ = µφ,

3
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where µ = −λ and

Q(y) = − ((m(x) + ω)−1/4)xx

(m(x) + ω)3/4
. (3.2)

Here
(
D−1

x

√
m + ω

)
(x) = x

√
ω +

∫ x

−∞
(
√

m(ξ) + ω − √
ω) dξ

in the case on the line, and
(
D−1

x

√
m + ω

)
(x) =

∫ x

0

√
m(ξ) + ω dξ

in the periodic case. Note that H−1 = ∫
(
√

m + ω − √
ω) dx is the first conservation law

in the negative hierarchy for (1.2) (see table 1), so that if m(x) is periodic, then the period∫ √
m + ω dx of Q(y) is preserved under all flows in the hierarchy.
Let us comment on the requirement

m + ω = −uxx + ω > 0. (3.3)

The constructions presented in the following sections formally also apply to the case ω = 0
corresponding to the Hunter–Saxton equation. If ω = 0, however, condition (3.3) can never
be fulfilled in the periodic setting, and, under realistic boundary conditions, it is also violated
in the case on the line. On the other hand, for ω > 0 and solutions u with uxx small, (3.3)
is seen to hold. In particular, all periodic smooth solitons of (1.2) satisfy (3.3) and are thus
covered by our approach c.f. [15].

3.2. Poisson correspondence

Define � as the map taking m(x) to the function Q(y) defined by (3.1) and (3.2). This
transformation will provide the correspondence between the two hierarchies. Before stating
the main result, we only need to make one more observation. Although the simplicity of the
Hamiltonian operators C1 and C2 make the Poisson brackets {·, ·}C1 and {·, ·}C2 introduced in
section 2 natural choices, the KdV equation can just as well be written as a bi-Hamiltonian
system in terms of the Poisson structures

{g1, g2}1 = −1

2

∫
δg1

δQ
C1C−1

2 C1
δg2

δQ

and

{g1, g2}2 = −1

2

∫
δg1

δQ
C1C−1

2 C1C−1
2 C1

δg2

δQ

Since

C−1
2 C1

δGn

δQ
= δGn+1

δQ
,

the KdV equation is bi-Hamiltonian with respect to {·, ·}1 and {·, ·}2 with Hamiltonians −2G0

respectively −2G−1. This change of Poisson brackets only amounts to a renumbering of the
commuting flows in the hierarchy.

Theorem 1. The transformation � maps the two Poisson structures for equation (1.2) into
those of the KdV equation. More precisely, for any two functionals g1[Q] and g2[Q] it holds
that

{g1 ◦ �, g2 ◦ �}B1 = {g1, g2}1 ◦ � (3.4)

4
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and

{g1 ◦ �, g2 ◦ �}B2 = {g1, g2}2 ◦ �. (3.5)

To prove theorem 1 we first note that use of the identities

Dx = √
m + ωDy, Dx

1√
m + ω

= 1√
m + ω

Dx − mx

2(m + ω)3/2

shows that the Hamiltonian operators for KdV and HS are related by

B1 = −2(m + ω)C2
√

m + ω, B2 = −2(m + ω)C1
√

m + ω. (3.6)

Moreover, we claim that for any functional g[Q] it holds that

δ(g ◦ �)

δm
= − 1

2
√

m + ω
C−1

2 C1
δg

δQ

∣∣∣∣
Q=�[m]

. (3.7)

If we temporarily assume this to be true, it follows from (3.6) that

{g1 ◦ �, g2 ◦ �}B1 =
∫

δ(g1 ◦ �)

δm
B1

δ(g2 ◦ �)

δm
dx

= −1

2

∫
δg1

δQ
C1C−1

2 C1
δg2

δQ
dy

= {g1, g2}1 ◦ �.

This proves (3.4) and a similar computation yields (3.5). Here and in the following we assume
that the function spaces have been chosen so that C−1

2 = D−1
y is skew-adjoint (in a situation

where this is not true the terms produced by constants of integration have to be incorporated
by hand).

To establish the claim (3.7) we need to compute the tangent map of the transformation �.
Let

F [m] = Q = − ((m(x) + ω)−1/4)xx

(m(x) + ω)3/4
. (3.8)

The derivative of Q(t, y) with respect to t holding x fixed is

Qy(t, y)
∂y

∂t
+ Qt(t, y) = QyD

−1
x

mt

2
√

m + ω
+ Qt.

In view of (3.8) this equals F ′[m] · mt , where

F ′[m] = − Q

m + ω
− ((m + ω)−1/4)xx

4(m + ω)7/4
+

1

4(m + ω)3/4
D2

x

1

(m + ω)5/4
.

Hence, if mt = X[m] and Qt = Y [Q], then

Y [Q] =
(

F ′[m] − QyD
−1
x

1

2
√

m + ω

)
X[m],

that is, the tangent map of � at m is

Tm� = F ′[m] − QyD
−1
x

1

2
√

m + ω
.

We can rewrite this by noticing that

F ′[m] =
(

1

4
D2

y − Q

)
1

m + ω
= −1

2
C1C−1

2

1

m + ω
+ QyD

−1
x

1

2
√

m + ω
,

5
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Table 1. Conservation laws of mHS.

n Hn
δHn
δm

2 1
2

∫ (
uu2

x + 2ωu2
)

dx D−2
x

( 1
2 u2

x + uuxx − 2ωu
)

1 1
2

∫
um dx u

0
∫

m dx 1
−1

∫
(
√

m + ω − √
ω) dx 1

2
√

m+ω

−2 − 1
16

∫ m2
x

(m+ω)5/2 dx mxx

8(m+ω)5/2 − 5m2
x

32(m+ω)7/2

Table 2. Conservation laws of KdV.

n Gn
δGn
δQ

2 1
4

∫ (
Q3 + 1

2 Q2
y

)
dy 3

4 Q2 − 1
4 Qyy

1 1
4

∫
Q2 dy 1

2 Q

0 1
2

∫
Q dy 1

2

−1 − 1
2

∫ (
1 −

√
ω√

m+ω

)
dy

√
m + ω

−2 − 1
2

∫
m√
m+ω

dy u
√

m + ω

and so

Tm� = −1

2
C1C−1

2

1

m + ω
. (3.9)

Now, for a functional g[Q], we have by definition of the variational derivative∫
δ(g ◦ �)

δm
ϕ dx = d

dε

∣∣∣∣
ε=0

g[�[m + εϕ]] =
∫

δg

δQ
T � · ϕ dy.

It follows that
δ(g ◦ �)

δm
= √

m + ωT ∗� · δg

δQ
, (3.10)

where T ∗� is the adjoint of T � with respect to
∫

dy, and the factor
√

m + ω arises because
the two dual spaces are identified using the inner products

∫
dx respectively

∫
dy related by

dy = √
m + ω dx. We know from (3.9) and the skew-adjointness of the Hamiltonian operators

that T ∗� = − 1
2(m+ω)

C−1
2 C1. Hence the claim (3.7) follows from (3.10).

4. Correspondence of hierarchies

The correspondence of Poisson structures described in the previous section implies that
the hierarchies of equations associated with KdV and the modified Hunter–Saxton (1.2)
(abbreviated mHS in this section) are also related. The first few conservation laws in the two
hierarchies are presented in tables 1 and 2. Observe, however, that since the Hamiltonian
operators contain derivative operators, there is an integration constant ambiguity at each step
of the construction of the ladder of conservation laws according to (2.1). In tables 1 and 2
these constants have been chosen so as to give the simplest possible expressions. Furthermore,
note that when descending the negative KdV hierarchy, or, equivalently, when climbing the
positive hierarchy for (1.2), increasingly nonlocal conservation laws appear, e.g. H0 = ∫

m dx

is local in m; H1 = 1
2

∫
mu dx and H2 = 1

2

∫ (
uu2

x + 2ωu2
)
dx are nonlocal in m, but become

6
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local when written in terms of u = −D−2
x m; H3 is nonlocal also in u and requires another

inversion of D2
x , etc. We do not consider in this paper the extent to which our computations can

be justified in a rigorous analytical framework, but are content with pointing out the general
structure of the correspondence and relating some of the simplest flows in the hierarchies (see
[12, 18] for some further remarks about analytic details in similar situations).

4.1. Flows

The flow of equation (1.2),

mt = B1
δH1

δm
= −2ωux + 2uxuxx + uuxxx,

is mapped under the transformation � to the flow

Qt = T � · B1
δH1

δm
.

Using expression (3.9) for T � and the first relation in (3.6) to replace B1 by
−2(m + ω)C2

√
m + ω, this becomes

Qt = C1C−1
2 C2

√
m + ω

δH1

δm
.

Furthermore, from tables 1 and 2 we see that
√

m + ωδH1
δm

= u
√

m + ω = δG−2

δQ
, and so the

evolution equation for Q is

Qt = C1
δG−2

δQ
,

which is the first member of the negative KdV hierarchy1. This shows that equation (1.2),
which is the second flow in the positive mHS hierarchy, corresponds to the first flow in the
negative KdV hierarchy.

Similarly, using the relations
δH−2

δm
= 1

2
√

m + ω
Q = 1√

m + ω

δG1

δQ
,

δH−1

δm
= 1

2
√

m + ω
= 1√

m + ω

δG0

δQ
,

δH0

δm
= 1 = 1√

m + ω

δG−1

δQ
,

we may deduce further correspondences between the flows in the two hierarchies. If we denote
flow number n in the hierarchy associated with the modified Hunter–Saxton equation (1.2) by
(mHS)n and the nth flow for the KdV hierarchy by (KdV)n, the result can be presented as in
table 3.

More generally, it follows that (at least modulo the problem of nonlocality and the choice
of constants of integration mentioned above) m evolves according to (mHS)n,

mt = B2
δHn

δm
= B1

δHn−1

δm
,

if and only if Q evolves according to (KdV)−n+1,

Qt = C2
δG−n+1

δm
= C1

δG−n

δm
.

This establishes the correspondence of the flows of the two hierarchies.

1 Here we have assumed that C−1
2 C2

δG−2
δQ

= δG−2
δQ

; otherwise a term arising from the integration constant has to be
included.

7
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Table 3. Correspondence of hierarchies.

mHS flow Equation for m Equation for Q KdV flow

(mHS)2 mt = −2ωux + 2uxuxx + uuxxx Qt = mx
2(m+ω)

(KdV)−1

(mHS)1 mt = mx Qt = 0 (KdV)0

(mHS)0 mt = 0 Qt = 1
2 Qy (KdV)1

(mHS)−1 mt = −mQy Qt = 3
2 QQy − 1

4 Qyyy (KdV)2

4.2. Conservation laws

What is the correspondence between the conservation laws themselves? Let g[Q] be a
functional of Q. From theorem 1 we infer that T � maps the Hamiltonian flow induced by
(g ◦ �)[m] with respect to {·, ·}B1 into the Hamiltonian flow of g[Q] with respect to {·, ·}1. In
other words,

mt = B1
δ(g ◦ �)

δm
(4.1)

maps to

Qt = −1

2
C1C−1

2 C1
δg

δQ
.

Choosing g to be the conservation law G−n−1 for KdV, we can write the equation for Q as

Qt = −1

2
C1C−1

2 C1
δG−n−1

δQ
= −1

2
C1

δG−n

δQ
.

But we know from above that the corresponding flow for m is

mt = −1

2
B1

δHn−1

δm
.

Comparing this with (4.1), we deduce that

δ(G−n−1 ◦ �)

δm
= −1

2

δHn−1

δm
,

i.e., the conservation laws are related by

Hn[m] = −2G−n−2[Q], n ∈ Z.

5. Concluding remarks

In this paper we have presented with the help of a Liouville transformation a nonlinear
correspondence between two soliton hierarchies: the hierarchy of the modified Hunter–Saxton
equation (1.2) and the KdV hierarchy. Under this transformation, the positive part of the KdV
hierarchy is identified with the negative part of the Hunter–Saxton hierarchy and vice versa.
The modified Hunter–Saxton equation corresponds to the first negative member of the KdV
hierarchy. Let us point out that there exists a similar transformation relating the hierarchies of
the Camassa–Holm and KdV equations, so that equation (1.3) can also be regarded as the first
negative member of the KdV hierarchy [18]. In particular, applying these two transformations
in sequence provides a map taking solutions of (1.2) to solutions of (1.3).

The approach is not applicable to the original Hunter–Saxton equation since the
transformation is well defined only for solutions u of (1.2) satisfying −uxx + ω > 0, a
condition that cannot be fulfilled under reasonable boundary conditions when ω = 0. On the

8
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other hand, for ω > 0, this condition is fulfilled by a large class of solutions for which uxx is
small. In particular, it can be shown that all periodic smooth solitons of (1.2) belong to this
class, cf [15].
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symmetries Physica D 4 47–66
[9] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Method for solving the Korteweg–de Vries

equation Phys. Rev. Lett. 19 1095–7
[10] Holden H, Karlsen K H and Risebro N H 2007 Convergent difference schemes for the Hunter–Saxton equation

Math. Comput. 76 699–744
[11] Hunter J K and Saxton R 1991 Dynamics of director fields SIAM J. Appl. Math. 51 1498–521
[12] Hunter J K and Zheng Y 1994 On a completely integrable nonlinear hyperbolic variational equation Physica D

79 361–86
[13] Lenells J 2002 The scattering approach for the Camassa–Holm equation J. Nonlinear Math. Phys. 9 389–93
[14] Lenells J 2005 Travelling wave solutions of the Camassa–Holm equation J. Diff. Eq. 217 393–430
[15] Lenells J Periodic solitons of an equation for short capillary-gravity waves unpublished
[16] Magri F 1978 A simple model of the integrable Hamiltonian equation J. Math. Phys. 19 1156–62
[17] Manna M A and Neveu A 2003 A singular integrable equation from short capillary-gravity waves (Preprint

physics/0303085)
[18] McKean H P 2003 The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm

hierarchies Commun. Pure Appl. Math. 56 998–1015
[19] Miura R M, Gardner C S and Kruskal M D 1968 Korteweg–de Vries equation and generalizations: II. Existence

of conservation laws and constants of motion J. Math. Phys. 9 1204–9
[20] Olver P J 1993 Application of Lie Groups to Differential Equations 2nd edn (New York: Springer)

9

http://dx.doi.org/10.1007/BF00739423
http://dx.doi.org/10.1088/0305-4470/38/18/L01
http://dx.doi.org/10.1137/050623036
http://dx.doi.org/10.1103/PhysRevLett.71.1661
http://dx.doi.org/10.1007/BF02392586
http://dx.doi.org/10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
http://dx.doi.org/10.1016/0167-2789(81)90004-X
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1137/0151075
http://dx.doi.org/10.2991/jnmp.2002.9.4.2
http://dx.doi.org/10.1016/j.jde.2004.09.007
http://dx.doi.org/10.1063/1.523777
http://www.arxiv.org/abs/physics/0303085

	1. Introduction
	2. bi-Hamiltonian formulations
	3. Correspondence of Poisson structures
	3.1. Liouville transformation
	3.2. Poisson correspondence

	4. Correspondence of hierarchies
	4.1. Flows
	4.2. Conservation laws

	5. Concluding remarks
	Acknowledgments
	References

